Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms

نویسندگان

  • Khondoker M Akram
  • Sohel Samad
  • Monica A Spiteri
  • Nicholas R Forsyth
چکیده

BACKGROUND Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. Furthermore, MSC can ameliorate pulmonary fibrosis in animal models although mechanisms of action remain unclear. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. METHODS To investigate the paracrine role of human MSC (hMSC) on pulmonary epithelial repair, hMSC-conditioned media (CM) and a selected cohort of hMSC-secretory proteins (identified by LC-MS/MS mass spectrometry) were tested on human type II alveolar epithelial cell line A549 cells (AEC) and primary human small airway epithelial cells (SAEC) using an in vitro scratch wound repair model. A 3D direct-contact wound repair model was further developed to assess the migratory properties of hMSC. RESULTS We demonstrate that MSC-CM facilitates AEC and SAEC wound repair in serum-dependent and -independent manners respectively via stimulation of cell migration. We also show that the hMSC secretome contains an array of proteins including Fibronectin, Lumican, Periostin, and IGFBP-7; each capable of influencing AEC and SAEC migration and wound repair stimulation. In addition, hMSC also show a strong migratory response to AEC injury as, supported by the observation of rapid and effective AEC wound gap closure by hMSC in the 3D model. CONCLUSION These findings support the notion for clinical application of hMSCs and/or their secretory factors as a pharmacoregenerative modality for the treatment of idiopathic pulmonary fibrosis (IPF) and other fibrotic lung disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activin-Directed Differentiation of Human Embryonic Stem Cells Differentially Modulates Alveolar Epithelial Wound Repair via Paracrine Mechanism

Differentiated embryonic stem cells (ESC) can ameliorate lung inflammation and fibrosis in animal lung injury models; therefore, ESC, or their products, could be candidates for regenerative therapy for incurable lung diseases, such as idiopathic pulmonary fibrosis (IPF). In this study, we have investigated the paracrine effect of differentiated and undifferentiated human ESC on alveolar epithel...

متن کامل

Epithelial-Mesenchymal Transitions in Development and Disease

The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, pr...

متن کامل

Mesenchymal Stem Cells: Interactions with Immune Cells and Immunosuppressive-Immunomodulatory Properties

Abstract Background and Objectives Recently, mesenchymal stem cells have attracted much attention in regenerative medicine and cell-based therapies. Mesenchymal stem cells are used in regenerative medicine mainly based on their capacity to differentiate into several cell lineages, low immunogenicity, and in particular their anti-inflammatory and immunosuppressive-immunomodulatory properties. ...

متن کامل

Comparative Analysis of Expression of Chemokoine Receptors CXCR4, CXCR6, CCR1 and CX3CR in Human Adipose-Drived Mesenchymal Stem Cell with Valproic Acid

Introduction: Chemokine receptors are found on the surface of stem cells. There have been 19 distinct chemokine receptors described in mammals. Chemokines are major players in migration and homing. Therefore, changes in their levels or function can help us to increase the migratory potential of these cells. Valproic acid differs in structure from other drugs in common use. The way in which Va...

متن کامل

Development and Application of Mesenchymal Stem Cell-derived Exosomes in Cartilage Tissue Repair

Background and Aim: Cartilage defects treatment is one of the most common clinical challenges in orthopedics. The current management techniques help to control symptom and joint function. The cell-free approach to cartilage regeneration through paracrine action has been considered to accelerate and facilitate the healing process and the importance of its urgency in the recovery of military pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013